Урок информатики на тему "формализация как важнейший этап моделирования". Основные принципы формализации Формализация описания

ФОРМАЛИЗАЦИЯ

ФОРМАЛИЗАЦИЯ

(2) Исходные постулаты (аксиомы) ФГпри получении из них теорем должны рассматриваться как цепочки бессодержательных символов, из которых по фиксированным правилам вывода получаются новые цепочки символов (теоремы). Иначе говоря, процесс получения теорем не должен осуществляться на основании очевидности, подтверждаемости практикой и т. п.

(3) Между классом теорем ФТк классом содержательно истинных утверждений теории Г должно быть определенное оговоренное , позволяющее ФТ считать формализацией Г (точнее об этом ниже).

Пункт (2) существенным образом отличает ФГот Г. В Г не обязательно есть фиксированные правила вывода, и для получения новых утверждений можно опираться на содержательный терминов и имеющийся . Если, напр., в Гсодержится , что α произошло раньше события β, то мы обязаны по содержательным основаниям относить к верным утверждениям теории Гтакже и то, что β произошло позже а. Вместе с тем мы не обязаны фиксировать это. Иначе в ФТ. Здесь логические связи между отношениями раньше и позже должны быть явным образом отображены. И если указанные отношения обозначаются как “” соответственно, то ФГдолжна содержать , позволяющее переходить от (αα). Очевидно, в ФТ придется указать также на указанных отношений. Кратко говоря, в ФГпридется отобразить логику данных отношений, необходимую для описания соответствующей предметной области. При этом сама эта логика может зависеть от того, напр., будет считаться непрерывным или дискретным, бесконечно или конечно делимым, даже если в Г эти вопросы не обсуждаются. Т. о., формализация состоит не просто в том, чтобы осуществить запись Гв некотором символическом языке, но в том, чтобы выявить и отобразить при этом логику, которой будут удовлетворять высказывания с теми терминами, которые фигурируют в Т. Решение такой проблемы является профессиональной задачей логики вообще и может исследоваться независимо от тех или иных конкретно взятых содержательных теорий и задач, связанных с их формализацией. Так, напр., в логике формализуются теории алогических, эпистемических, деонтических, временных и другие модальностей, полные относительно некоторых содержательных семантик. Вопрос о возможности формализации теории Гесть поэтому не только о готовности к этой процедуре со стороны Г, но и о том, в достаточной ли степени разработан для этой цели имеющийся и математический аппарат.

В связи с пунктом (3) надо иметь в виду, что ФГв явном виде содержит всю необходимую для формализации теории Глогику и математику и соответствующий им правил или содержательно интерпретируемых теорем, напр., контрапозиции импликации: (Α-ϊΒ)->(-ιΒ-*-τΑ) и т. п., которым фактически нет соответствия в Т. Кроме того, Т обычно не детерминирует всех логических взаимоотношений высказы

ваний, содержащих используемую в ^терминологию. Поэтому ФТ практически всегда задает ту или иную экспликацию этой терминологии. Если даже отвлечься от возможности использования в ФГразличных базовых логик и математик, то уже только оправданные содержанием Г логические различия в экспликациях терминологии позволяют построить для одной и той же содержательной теории Г альтернативных формализации. При этом теория Гв зависимости от того, какая конкретная формализация будет сочтена адекватной, будет в той или иной степени менять свой смысл. Дело логика указать, чем отличаются возможные альтернативы, но не в его компетенции считать какую-то из них более предпочтительной, не говоря уже более верной. Чтобы иметь возможность содержательного обсуждения теории ФТ, в частности, говорить о ее непротиворечивости, полноте, доказуемости или недоказуемости в ней теорем определенного рода, используется т. н. (в отличие от языка, на котором сформулирована ФТ), и все верные утверждения такого рода относят к метатеории МФТ.

Проблему формализации содержательной теории Гв ФГможно считать решенной, если в рамках метатеории.МФГудается показать, что каждому истинному в принятой интерпретации предложению Т соответствует доказуемое утверждение Φ Γ ( полноты), и наоборот (теорема адекватности). В силу разных причин такого положения не всегда удается добиться. Об этом говорит, в частности, известная теорема К. Геделя (1931) о неполноте непротиворечивой формализованной арифметики. Дело в том, что некоторая формализуемая теория Гможет содержать столь богатый выразительными возможностями язык, что в ее рамках могут строится утверждения о формализующей ее системе ФГи, значит, отображаться в последней. Происходит т. н. замыкание языка и метаязыка. Любая непротиворечивая формализация теории Т оказывается принципиально неполной, так как любое ФГпорождает класс новых содержательно истинных в МФТтл в самой Гпредложений. Именно такого рода теорией Гоказывается содержательная арифметика. В объектном языке формализующей эту арифметику теории ФТ можно строить утверждения о самой этой теории, которые при содержательной интерпретации становятся истинными предложениями теории Т. В ФГвоспроизводится, в частности, некоторая парадокса лжеца (см. Парадокс логический), т. к. всегда находится формула, утверждающая свою собственную недоказуемость в ФТ. Такая формула содержательно истинна именно потому, что в ФТ недоказуема. Ее в Г и при этом недоказуемость в ФГговорит о неполноте последней. Теорема Геделя не исключает возможности полной формализации более узких фрагментов математики. Теореме Геделя о неполноте не следует придавать преувеличенного, во всяком случае универсального философского значения и распространять ее следствия на теории, при формализации которых принципиально отсутствуют и не могут возникнуть рассмотренные выше причины, препятствующие полной формализации всех истинных предложений содержательной математики. Лит.: КаиниС. К. Введение в метаматематику. М., 1957.

Ε. А. Сидоренко

Новая философская энциклопедия: В 4 тт. М.: Мысль . Под редакцией В. С. Стёпина . 2001 .


Синонимы :

Цели:

    дать учащимся общее представление о формализации объекта;

    сформировать понятие формализации;

    развить исследовательскую компетентность учащихся при формализации модели, логическое мышление, расширить кругозор;

    развить познавательный интерес, воспитать информационную культуру.

Программно-дидактическое обеспечение

ЭВМ типа IBM , операционная система Windows , ППП MS Office XP и выше,

Презентация Формализация . pps .

Теоретический материал

Формализация как важнейший этап моделирования

Слайд №1

В своей деятельности - художественной, научной, практической - человек очень часто создает некоторый образ того объекта (процесса или явления), с которым ему приходится или придется иметь дело, - модель этого объекта. Создание этого образа всегда преследует некую цель. Модель важна не сама по себе, а как инструмент, облегчающий познание или наглядное представление.

В процессе познания окружающего мира и общения мы сталкиваемся с формализацией почти на каждом шагу: формулируем мысли, оформляем отчеты, заполняем всевозможные формуляры и формы, преобразуем формулы. При изучении нового объекта сначала обычно строится его описательная информационная модель на естественном языке, затем она формализуется, то есть, выражается с использованием формальных языков (математики, логики и др.).

Таким образом, прежде чем построить модель объекта (явления, процесса), необходимо выделить составляющие его элементы и связи между ними (провести системный анализ) и «пере­вести» (отобразить) полученную структуру в какую-либо заранее определенную форму - формализовать информацию.

Слайд №2

Формализация - это процесс выделения и перевода внутренней структуры предмета, явления или процесса в определенную информационную структуру - форму. Моделирование любой системы невозможно без предварительной формализации. По сути, формализация - это первый и очень важный этап процесса моделирования.

Формализация - это замена реального объекта или процесса его формальным описанием, т. е. его информационной моделью.

Слайд №3

Построив информационную модель, человек использует ее вме­сто объекта-оригинала для изучения свойств этого объекта, прогнозирования его поведения и пр. Прежде чем строить какое-то сложное сооружение, например мост, конструкторы делают его чертежи, проводят расчеты прочности, допустимых нагрузок. Та­ким образом, вместо реального моста они имеют дело с его мо­дельным описанием в виде чертежей, математических формул. Если же конструкторы пожелают воспроизвести мост в уменьшенном размере, то это уже будет натурная модель - макет моста.

Слайд №4

Естественные языки используются для создания описательных информационных моделей. В истории науки известны многочисленные описательные информационные модели; например, гелиоцентрическая модель мира, которую предложил Коперник, формулировалась следующим образом:

    Земля вращается вокруг своей оси и вокруг Солнца;

    орбиты всех планет проходят вокруг Солнца.

Слайд №5

С помощью формальных языков строятся формальные информационные модели (математические, логические и др.). Одним из наиболее широко используемых формальных языков является математика. Модели, построенные с использованием математических понятий и формул, называются математическими моделями. Язык математики является совокупностью формальных языков.

Слайды №6-8

Язык алгебры (алгебры высказываний) позволяет формализовать функциональные зависимости между величинами. Так, Ньютон формализовал гелиоцентрическую систему мира, открыв законы механики и закон всемирного тяготения и записав их в виде алгебраических функциональных зависимостей. В школьном курсе физики рассматривается много разнообразных функциональных зависимостей, выраженных на языке алгебры, которые представляют собой математические модели изучаемых явлений или процессов.

Язык алгебры логики позволяет строить формальные логические модели. С помощью алгебры высказываний можно формализовать (записать в виде логических выражений) простые и сложные высказывания, выраженные на естественном языке. Построение логических моделей позволяет решать логические задачи, строить логические модели устройств компьютера (сумматора, триггера) и так далее.

В энциклопедическом словаре приведена следующая трактовка этого понятия: «Формализация - это представление и изучение какой-либо содержательной области знаний (научной теории, рассуждения, процедур поиска и т. п.) в виде формальной системы или исчисления.

Слайд №9

В контексте моделирования под формализацией будем понимать процесс перевода описания задачи в общем виде (общей формулировки задачи) на язык формального представления, с тем чтобы создать компьютерную модель и исследовать ее. С точки зрения обработки информации следует определить исходные данные (что необходимо обрабатывать) и описать правила обработки (как обрабатывать).

Слайд №10

Формализация - один из главных инструментов математики. Т.к. математика оперирует реально несуществующими сущностями, абстрактными понятиями, описывает законы, теоремы, правила, гипотезы и прочее, то без соглашений о представлении всего этого здесь невозможно обойтись.















Один и тот же объект может иметь множество моделей, а разные объекты могут описываться одной моделью. География- различные типы географических карт (политические, физические, и т.д.) представляют один объект- землю, но отражают различные модели. Физика- все материальные тела (человек, машина и т.д.) рассматриваются как материальная точка Модель материальной точки Модель Земли Объект- Земля








Постановка задачи начинается с ее описания. Цель описания задачи - подробно описать исходный объект, условия, в которых он находится, и желаемый результат (отправной и конечный пункты моделирования). Процесс построения информационной модели с помощью формальных языков называется формализацией Что моделируется? Процесс движения объекта «автомобиль» Вид движенияРавноускоренное Что известно о движении? Начальная скорость (V0), ускорение (а), максимально развиваемая скорость (Vmax) Что надо найти? Скорость (Vi) в заданные моменты времени (ti). Как задаются моменты времени? От нуля через равные интервалы (t)? Что ограничивает расчеты? Vi



Формализация и моделирование

Модель - это искусственно создаваемый объект, заменяющий некоторый объект реального мира (объект моделирования) и воспроизводящий ограниченное число его свойств. Понятие модели относится к фундаментальным общенаучным понятиям, а моделирование - это метод познания действительности, используемый различными науками.

Объект моделирования - широкое понятие, включающее объекты живой или неживой природы, процессы и явления действительности. Сама модель может представлять собой либо физический, либо идеальный объект. Первые называются натурными моделями, вторые - информационными моделями. Например, макет здания - это натурная модель здания, а чертеж того же здания - это его информационная модель, представленная в графической форме (графическая модель).

В экспериментальных научных исследованиях используются натурные модели, которые позволяют изучать закономерности исследуемого явления или процесса. Например, в аэродинамической трубе моделируется процесс полета самолета путем обдувания макета самолета воздушным потоком. При этом определяются, например, нагрузки на корпус самолета, которые будут иметь место в реальном полете.

Информационные модели используются при теоретических исследованиях объектов моделирования. В наше время основным инструментом информационного моделирования является компьютерная техника и информационные технологии.

Компьютерное моделирование включает в себя прогресс реализмом информационной модели на компьютере и исследование с помощью этой модели объекта моделирования - проведение вычислительного эксперимента.

Формализация
К предметной области информатики относятся средства и методы компьютерного моделирования. Компьютерная модель может быть создана только на основе хорошо формализованной информационной модели. Что же такое формализация?

Формализация информации о некотором объекте - это ее отражение в определенной форме. Можно еще сказать так: формализация - это сведение содержания к форме. Формулы, описывающие физические процессы, - это формализация этих процессов. Радиосхема электронного устройства - это формализация функционирования этого устройства. Ноты, записанные на нотном листе, - это формализация музыки и т.п.

Формализованная информационная модель - это определенные совокупности знаков (символов), которые существуют отдельно от объекта моделирования, могут подвергаться передаче и обработке. Реализация информационной модели на компьютере сводится к ее формализации в форматы данных, с которыми "умеет" работать компьютер.

Но можно говорить и о другой стороне формализации применительно к компьютеру. Программа на определенном языке программирования есть формализованное представление процесса обработки данных. Это не противоречит приведенному выше определению формализованной информационной модели как совокупности знаков, поскольку машинная программа имеет знаковое представление. Компьютерная программа - это модель деятельности человека по обработке информации, сведенная к последовательности элементарных операций, которые умеет выполнять процессор ЭВМ. Поэтому программирование на ЭВМ есть формализация процесса обработки информации. А компьютер выступает в качестве формального исполнителя программы.

Этапы информационного моделирования

Построение информационной модели начинается с системного анализа объекта моделирования (см. "Системный анализ" ). Представим себе быстро растущую фирму, руководство которой столкнулось с проблемой снижения эффективности работы фирмы по мере ее роста (что является обычной ситуацией) и решило упорядочить управленческую деятельность.

Первое, что необходимо сделать на этом пути, - провести системный анализ деятельности фирмы. Системный аналитик, приглашенный в фирму, должен изучить ее деятельность, выделить участников процесса управления и их деловые взаимоотношения, т.е. объект моделирования анализируется как система. Результаты такого анализа формализуются: представляются в виде таблиц, графов, формул, уравнений, неравенств и пр. Совокупность таких описаний есть теоретическая модель системы.

Следующий этап формализации - теоретическая модель переводится в формат компьютерных данных и программ. Для этого" используется либо готовое программное обеспечение, либо привлекаются программисты для его разработки. В конечном итоге получается компьютерная информационная модель, которая будет использоваться по своему назначению.

Для примера с фирмой с помощью компьютерной модели может быть найден оптимальный вариант управления, при котором будет достигнута наивысшая эффективность работы фирмы согласно заложенному в модель критерию (например, получение максимума прибыли на единицу вложенных средств).

Классификация информационных моделей может основываться на разных принципах. Если классифицировать их по доминирующей в процессе моделирования технологии, то можно выделить математические модели, графические модели, имитационные модели, табличные модели, статистические модели и пр. Если же положить в основу классификации предметную область, то можно выделить модели физических систем и процессов, модели экологических (биологических) систем и процессов, модели процессов оптимального экономического планирования, модели учебной деятельности, модели знаний и др. Вопросы классификации важны для науки, т.к. они позволяют сформировать системный взгляд на проблему, но преувеличивать их значение не следует. Разные подходы к классификации моделей могут быть в равной мере полезны. Кроме того, конкретную модель отнюдь не всегда можно отнести к одному классу, даже если ограничиться приведенным выше списком.

Государственный образовательный стандарт предусматривает изучение вопросов, относящихся к информационному моделированию, как в базовом курсе основной школы, так и в старших классах. Примерная программа курса информатики рекомендует изучение темы "Формализация и моделирование" в 8-м классе на уровне примеров моделирования объектов и процессов. Прежде всего предполагается использование графических и табличных моделей. В старших классах предусмотрено общее (теоретическое) введение в тему и изучение различных видов компьютерного моделирования на уровне математических ("расчетных"), графических, имитационных моделей, связанных с социальными, биологическими и техническими системами и процессами. Эффективной формой углубленного изучения компьютерного моделирования являются элективные курсы для старшеклассников.

Образовательные задачи, решаемые в ходе изучения информационного моделирования

Решение указанных ниже задач позволяет оказать существенное влияние на общее развитие и формирование мировоззрения учащихся, интегрировать знания по различным дисциплинам, осуществлять работу с компьютерными программами на более профессиональном уровне.

Общее развитие и становление мировоззрения учащихся

Курсы, ориентированные на моделирование, должны выполнять развивающую функцию, поскольку при их изучении учащиеся продолжают знакомство еще с одним методом познания окружающей действительности - методом компьютерного моделирования. В ходе работы с компьютерными моделями приобретаются новые знания, умения, навыки. Некоторые ранее полученные сведения конкретизируются и систематизируются, рассматриваются под другим углом зрения.

Овладение моделированием как методом познания

Основной упор в каждом из такихкурсов необходимо сделать на выработку общего методологического подхода к построению компьютерных моделей и работе с ними. Необходимо

  1. продемонстрировать, что моделирование в любой области знаний имеет схожие черты; зачастую для различных процессов удается получить очень близкие модели;
  2. выделить преимущества и недостатки компьютерного эксперимента по сравнению с экспериментом натурным;
  3. показать, что и абстрактная модель, и компьютер представляют возможность познавать окружающий мир, а иногда и управлять им в интересах человека.

Выработка практических навыков компьютерного моделирования

На примере ряда моделей из различных областей науки и практической деятельности необходимо проследить все этапы компьютерного моделирования с исследования моделируемой предметной области и постановки задачи до интерпретации результатов, полученных в ходе компьютерного эксперимента, показать важность и необходимость каждого звена. При решении конкретных задач следует выделять и подчеркивать соответствующие этапы работы с моделью. Решение данной задачи предполагает поэтапное формирование практических навыков моделирования, для чего служат учебные задания с постепенно возрастающим уровнем сложности и компьютерные лабораторные работы.

Содействие профессиональной ориентации учащихся

Учащиесястаршей ступени школы стоят перед проблемой выбора будущей профессии. Проведение курса компьютерного моделирования способно выявить тех из них, кто имеет способности и склонность к исследовательской деятельности. Способности учащихся к проведению исследований следует развивать различными способами, на протяжении всего курса поддерживать интерес к выполнению компьютерных экспериментов с различными моделями, предлагать для выполнения задания повышенной сложности. Таким образом, развитие творческого потенциала учащихся и профориентация - одна из задач курса.

Преодоление предметной разобщенности, интеграция знаний

В рамках учебного курса целесообразно рассматривать модели из различных областей науки, что делает курс частично интегрированным. Для того чтобы понять суть изучаемого явления, правильно интерпретировать полученные результаты, необходимо не только владеть приемами моделирования, но и ориентироваться в той области знаний, где проводится модельное исследование. Реализация межпредметных связей в таком курсе не только декларируется, как это иногда бывает в других дисциплинах, но является зачастую основой для освоения учебного материала.

Развитие и профессионализация навыков работы с компьютером

Перед учащимися ставится задача не только реализовать на компьютере предложенную модель, но и наиболее наглядно, в доступной форме отобразить полученные результаты. Здесь может помочь построение графиков, диаграмм, динамических объектов, пригодятся и элементы мультипликации. Программа должна обладать адекватным интерфейсом, вести диалог с пользователем. Все это предполагает дополнительные требования к знаниям и умениям в области алгоритмизации и программирования, приобщает к более полному изучению возможностей современных парадигм и систем программирования.

Задание:

    Составить схему ключевых понятий.

ФГКОУ СОШ № 8

Класс: 9

Предмет: информатика

Тема мероприятия: «Формализация описания реальных объектов и процессов. Виды информационных моделей. Табличные модели».

Форма мероприятия: урок.

Методическое обеспечение урока: на основе информационно-коммуникативных, личностно-ориентированных, технологии развивающего обучения, создаются условия для формирования познавательных, регулятивных, коммуникативных и личностных УУД с целью формирования у учащихся понятий формализация, информационная модель, научить строить табличную информационную модель с помощью электронных таблиц и осуществлять визуализацию модели. Развивать исследовательскую компетентность учащихся при формализации модели через структурирование учебного материала с помощью электронных таблиц.

Для слабых учащихся: Пробудить интерес к процессу моделирования путем использования посильных задач, учебных программных средств, позволяющих ученику работать в соответствии с его индивидуальными способностями.

Для средних учащихся: Развить устойчивый интерес к предмету, через построение табличных моделей.

Для сильных учащихся: Развить устойчивый интерес к процессу моделирования, через решение различных задач в Excel.

Способствовать обогащению внутреннего мира учащихся, повышению интереса к изучению предмета, воспитание культуры поведения и компьютерной грамотности.

Тип урока: Урок формирования первоначальных предметных навыков, овладения предметными умениями.

Средства обучения: мультимедийный проектор, презентация в Power Point.

Приемы для формирования общеучебных умений и навыков: фронтальная беседа, самостоятельная индивидуальная работа, самоконтроль, групповая рефлексия.

Ход урока

Этапы урока. Цели

Деятельность учителя

Деятельность ученика

Планируемые результаты

I. Орг. момент.

Цель: Формирование навыка научной организации труда

1. Учитель проверяет готовность класса к уроку.
2. Совместно с учениками формулирует цель урока.
3. Настраивает класс на продуктивную деятельность

1.Готовятся к работе: организуют рабочее место.
2. Совместно с учителем формулируют цель урока, исходя из формулировки поставленной темы.

Регулятивные УУД (универсальные учебные действия) на основе умения организовать рабочее место

Коммуникативные УУД на основе инициативного сотрудничества в поиске информации, умения выражать свои мысли

II. Актуализация прежних знаний:

Цель:

Мотивация учащихся на предстоящую деятельность.

Фронтальное обсуждение материала, изученного на прошлом уроке.

На прошлом уроке мы познакомились с понятием модель, моделирование, формализация.

Итак, что такое модель? (Слайд 1 )

Поставьте в соответствие оригинал и модель.

Какая связь существует между количеством моделей и количеством оригиналов?

Зачем нужно изучать и рассматривать много моделей? От чего зависит выбор модели?

Отвечают на вопросы, воспроизводя изученный материал прошлого урока, устанавливают причинно-следственные связи между объектами.

Модель – это объект, который обладает некоторыми свойствами другого объекта (оригинала) и используется вместо него.

(Слайд 2 )

(Слайд 3 )

Познавательные УУД на основе умения извлекать необходимую информацию из прослушанной и увиденной информации, умения определять основное и второстепенное, устанавливать причинно-следственные связи

Цель: 1) первичная проверка усвоения пройденного материала, необходимого и достаточного для усвоения нового

Организует индивидуальную самостоятельную работу в тестовой форме. Вопросы демонстрируются на интерактивной доске.

Слайд 4-8

Учащиеся отвечают на вопросы теста. Проверяют правильность выполнения работы

Познавательные УУД на основе поиска и отбора необходимой информации и способов решения задач. Самооценка и самоанализ собственных учебных достижений.

Коммуникативные УУД на основе контроля друг друга.

III. Первичное восприятие и усвоение теоретического материала

2) Предоставить учащимся информацию по теме «Табличные модели»

Представляет новый материал в виде опорных схем, иллюстративного материала.

Слайд 9-11

Познавательные УУД на основе умения извлекать необходимую информацию из прослушанного материала. Коммуникативные УУД на основе инициативного сотрудничества совершенствуют владение диалогической формой речи

IV. Применение теоретических положений

Цель: первичное применение технологии решения задач на составление табличных моделей

Организует закрепление учебного материала, демонстрирует презентацию с технологией решения задач на структурирование текста, представление информации в табличной форме. Ставит проблему о результатах решения задачи.

Инструктирует о правилах ТБ при работе за компьютером

Организует деятельность учащихся по выполнению самостоятельной работы за компьютером с составлением таблицы в среде табличного процессора Excel .

Проводит гимнастику для глаз

Воспринимают полученную информацию, работают по образцу, предложенному учителем, задают вопросы, уясняют основные этапы технологии решения задач за компьютером при создании и реализации математической модели

Слайд 12-14

Правильное воспроизведение образцов выполнения заданий, безошибочное применение алгоритмов и правил при решении учебных задач

Регулятивные УУД через усвоение стандартных технологий решения, познавательные УУД на основе понимания сущности решения задач за компьютером в среде табличного процессора Excel , коммуникативные – общение с учителем на основе умения задавать «умные вопросы»

V . Закрепление знаний и способов деятельности

Цель: самооценка и самоанализ результатов деятельности

Проводит проверку результатов с/р, выявляет уровень знаний учащихся по теме. Организует коррекцию на основе индивидуальной работы с учащимися по технологическим карточкам

Осуществляют анализ и самоанализ результатов с/р, соотносят результат своих достижений с образцом, выполняют задания по индивидуальным карточкам

Познавательные УУД – формирование прочных знаний и умений структурировать текст, составлять табличную модель, диаграмму. Личностные УУД на основе самооценки и самоанализа собственный учебных достижений

VI .Подведение итогов, домашнее задание

Цель: подведение итогов и самооценка полученного результата

Консультирует учащихся по решению домашнего задания (Слайд 15 )

Проводит промежуточную рефлексию.

Записывают домашнее задание, комментируют, фиксируют рекомендации.

Формулируют свое отношение к уроку, используя предложенные высказывания.

Регулятивные УУД – на основе самоанализа выявить пробелы в знаниях и планирование деятельности по устранению этих пробелов

Литература: http://kpolyakov.narod.ru/