Диод от солнечных батарей своими руками. Новый вид энергии на основе светодиодной солнечной батареи. Опыт разрешит все споры


С каждым днем выбросы углекислоты и токсичных веществ в атмосферу увеличивается, токсичные вещества вырабатываются при сгорании ископаемого топлива, в следствии чего постепенно уничтожают нашу планету. Поэтому внедрение «зеленой энергии», у которой вовсе отсутствует негативное влияние на окружающую среду, уже закрепила себя как базой основ новых электротехнологий. Одной из основ таких технологий получения экологически чистой электроэнергии это технология которая преобразует солнечный свет в электроэнергию. Далее пойдет речь о солнечных батареях, а так же их возможности в собственном доме.
В нынешнее время электроустановки в виде солнечных батарей изготовленных в промышленных условиях, используются для полного и частичного энерго-обеспечения и тепло-обеспечения дома, и стоят в районе 15-20 тысяч долларов при гарантии работы 25 лет.
Гелиосистемы разделяют на тепло обеспечения и энергообеспечения. В случае тепло обеспечения используются технологии солнечного коллектора. В случае энергообеспечения происходит фотоэлектрический эффект, с помощью которого происходит генерация электричества в солнечных батареях. Далее я опишу технологию ручной сборки солнечной батареи.
Технология ручной сборки солнечной батареи вовсе не сложна и даже очень проста и доступна всем. Почти каждый человек может собрать солнечные батареи с относительно высоким КПД при довольно низких затратах. Это экологично, выгодно, доступно и в последнее время модно.

Выбор солнечных элементов для солнечной панели

Приступив к созданию солнечной электростанции, нужно учитывать, что при ручной сборке солнечных батарей нет нужды сразу собирать полнофункциональную солнечную электростанцию, её в будущем можно будет наращивать. Если первый эксперимент ручной сборки оказался положительным, то после имеет смысл увеличить функциональность солнечной электростанции.

Прежде всего нужно знать что такое солнечная батарея, солнечная батарея — это прежде всего генератор, который работает на основе фотоэлектрического эффекта и преобразует солнечную тепловую энергию в электрическую энергию. Кванты света, которые вырабатывает солнце, попадают на кремниевую пластину и выбивает электрон с последней атомной орбиты кремния. Данный эффект создает большое количество свободных электронов, которые образуют поток электрического тока.

Перед тем как приступить к сборке солнечной батареи нужно сделать выбор в типе фотоэлектрического преобразователя. Фотоэлектрические преобразователи: монокристаллические, поликристаллические и аморфные. Для ручной сборки солнечной батареи чаще всего выбирают легко доступные в продаже поликристаллические и монокристаллические солнечные модули.

Солнечные панели из поликристаллического кремния имеют достаточно низкий КПД от 7 до 9%, но этот недостаток компенсируется тем, что поликристаллические панели практически не понижают КПД при облачной и пасмурной погоде, гарантийная работоспособности поликристаллических элементов составляет примерно 10 лет. Солнечные панели на основе элементов монокристаллического кремния имеют более высокий КПД около 13% и сроки работоспособности приблизительно 25 лет, но монокристаллические элементы сильно понижают мощность при отсутствии прямого попадания солнечного света. Величина КПД кристаллов кремния может существенно изменятся от разных производителей. На практике работы солнечных электростанций в полевых условиях можно сказать о сроке службы монокристаллических панелей более 30 лет, а для поликристаллических модулей — более чем 20 лет. Причем за весь период эксплуатации потеря мощности у кремниевых монокристаллических и поликристаллических модулей составляет не более 10 процентов, а у тонкопленочных аморфных модулей только за первые два года мощность может снизится на 10-40%.

Набор Solar Cells можно приобрести на аукционе Еbay для сборки солнечной батареи из 36 и 72 солнечных элементов. Эти наборы так же доступны в продаже в Украине и в России. Зачастую, для ручной сборки солнечных батарей используются солнечные модули В-типа, это те модули, которые отбраковали на промышленном производстве. Они не теряют своих эксплуатационных показателей, но зато намного дешевле.

Разработка проекта гелиевой энергосистемы

Проектирование задуманной солнечной электростанции зависит от способа её монтажа и установки. К примеру солнечные батареи должны устанавливаться под определенным наклоном, чтобы обеспечить прямое попадание солнечных лучей под перпендикулярным углом. КПД солнечной панели так же зависит от интенсивности световой энергии, а также зависит от угла попадания солнечных лучей.
Смотреть сверху вниз: Монокристаллические солнечные панели (по 80 ватт) на даче установлены практически вертикально (зима). Монокристаллические солнечные панели на даче имеют меньший угол (весна)ю Механическая система управления углом наклона солнечной батареи.

Промышленные солнечные панели очень часто снабжены специальными датчиками, которые обеспечивают движение солнечных панелей по направлению движения солнечных лучей, что очень увеличивает стоимость солнечных панелей. Но так же тут может быть применено ручное механическое управление углом наклона солнечных панелей. В зимнее время солнечные панели должны быть практически вертикальными, чтобы исключить залегание снега на солнечных панелях.

Схема расчета угла наклона солнечной панели в зависимости от времени года

Солнечные батареи следует устанавливать с солнечной стороны вашего дома, чтобы за световой день пребывание солнечных лучей на солнечных батареях было максимально. В зависимости от географического расположения вашего дома и времени года вычисляется оптимальный угол наклона для вашего месторасположения.

Выбор оптимального статического угла наклона для кровельной солнечной системы монокристаллического типа

При сооружении солнечных панелей можно выбирать самые разные материалы по массе и другим характеристикам. Но при выборе материалов следует учитывать максимально допустимые температуры нагрева материалов, т.к. при работе солнечных модулей на полную мощность температура не должна превышать 250 градусов по Цельсию. При пиковой температуре солнечные модули теряют свою функцию производства электрического тока.
Готовые гелиосистемы зачастую не предполагают охлаждения солнечных модулей. Ручное изготовление может включать в себя охлаждение гелиосистемы и управление углом наклона солнечных панелей для регулировки температуры модуля, а так же выбор прозрачного материала, который будет поглощать ИК-излучение.

Как показали расчеты, в ясный солнечный день из 1 метра солнечных панелей можно получить 120 Вт мощности, но этого не хватит чтоб запустить даже компьютер. Солнечные панели размером в 10 метров производит уже более 1кВт электроэнергии, что позволит снабдить электроэнергией светильники, телевизоры и ваш компьютер. Для обычной семьи 3-4 человека необходимо около 300 кВт в месяц, поэтому солнечные панели должны быть размеров 20м, при условии что солнечные панели будут установлены с солнечной стороны вашего дома.
Для уменьшения месячного электро-потребления советую использовать для освещения вместо обычных лампочек, светодиодные лампочки.

Изготовление каркаса солнечной батареи

Для изготовления корпуса солнечной панели в основном используют алюминиевые уголки. В интернет магазинах можно приобрести уже готовые корпуса для солнечных батарей. А так же для изготовления корпуса солнечной панели выбирают по желанию прозрачное покрытие.

Комплект рамы со стеклом для солнечной батареи, примерная стоимость от 33 долларов

При выборе прозрачного материала можно опираются на следующие характеристики материалов:

Если в качестве критерия выбора рассматривать показатель преломления солнечного света, то самый минимальный коэффициент у плексиглас, более дешевый вариант это обычное стекло, менее подходящий это поликарбонат. Но в продаже сейчас имеется поликарбонат с антиконденсатным покрытием, что обеспечивает качественный уровень теплозащиты.

Важно про изготовлении солнечных панелей выбирать прозрачные материалы которые не пропускают ИК-спектр, что снизит нагревание кремниевых элементов.

Схема поглощения УФ и ИК излучения различными стеклами. а) обычное стекло, б) стекло с ИК-поглощением, в) дуплекс с термопоглощающим и обычным стеклом .

Защитное силикатное стекло с оксидом железа обеспечивает максимальное поглощение ИК-спектра. ИК-спектр хорошо поглощает любое минеральное стекло, а так же минеральное стекло более устойчиво к повреждениям, но в тоже время является очень дорогим и недоступным.

Так же зачастую для солнечных панелей применяют специальные антибликовые сверх прозрачные стекла, которые пропускают до 98% спектра.

Солнечная панель в корпусе из оргстекла

Монтаж корпуса солнечной батареи

В данном случае будет показано изготовление солнечной панели из 36 поликристаллических солнечных модулей размером 81х150мм. Отсюда вычисляем размеры будущей солнечной панели. Важно при расчете между модулями оставлять небольшое расстояние, которое может меняются при воздействии атмосферных воздействий, т.е. оставляйте между модулями примерно 3-5мм. В итоге получим размер заготовки 835х690мм при ширине уголка 35мм.

Самодельная солнечная батарея изготовленная вручную, сделанная с использованием алюминиевого профиля, очень похожа на солнечную панель фабричного изготовления. При этом обеспечивается высокая степень герметичности и прочности конструкции.
Для изготовления берем алюминиевый уголок, и выполняем заготовки рамки 835х690 мм. Чтобы можно было провести крепление метисов, в раме следует сделать отверстия.
На внутреннюю часть уголка дважды наносим силиконовый герметик.
Важно чтобы не было незаполненных мест. От качества нанесения герметика зависит герметичность и долговечность батареи.
Далее в раму кладется прозрачный лист из выбранного материала: поликарбоната, оргстекла, плексигласа, антибликового стекла. Важно силикону дать высохнуть на открытом воздухе, иначе испарения создадут пленку на элементах.
Стекло требуется тщательно прижать и зафиксировать.
Для надежного крепления защитного стекла используем метисы. Нужно закрепить 4 угла рамки и по периметру разместить два метиса с длинной стороны рамки и по одному метису с короткой стороны.
Метисы фиксируются при помощи шурупов.
Каркас солнечной батареи готов. Важно перед креплением солнечных элементов, нужно очистить стекло от пыли.

Подбор и пайка солнечных элементов

В данное время в интернет магазинах представлен огромный ассортимент изделий для самостоятельного изготовления солнечных батарей.

Набор Solar Cells включает комплект из 36 поликристаллических кремниевых элементов, проводники для элементов и шины, диоды Шотке и карандаш с кислотой для паяния

Из-за того что солнечная батарея, сделанная своими руками, ориентировочно в 4 раза дешевле заводской готовой, собственное изготовление — это огромная экономия средств. В интернет магазинах можно приобрести солнечные модули, элементы с дефектами, при этом они не теряют своей функциональности, но придется пожертвовать внешним видом солнечной батареи.

Поврежденные фотоэлементы не теряют своей функциональности

Если вы впервые занимаетесь изготовлением солнечных батарей, то лучше приобретать наборы для изготовления солнечных панелей, в продаже имеются солнечные элементы с припаянными проводниками. Так как пайка контактов — это достаточно сложный процесс, сложность заключается в хрупкости солнечных элементов.

Если вы купили кремниевые элементы без проводников, то в первую очередь необходимо провести пайку контактов.


Так выглядит поликристаллический кремниевый элемент без проводников.
Проводники надрезаются с помощью картонной заготовки.
Необходимо аккуратно положить проводник на фотоэлемент.
На место припаивания нанести кислоту для паяния и припой. Проводник для удобства фиксируется с одной стороны тяжелым предметом.
В таком положении необходимо аккуратно припаять проводник к фотоэлементу. Во время пайки нельзя нажимать на кристалл, потому что он очень хрупкий.

Пайка элементов для солнечных панелей — это весьма кропотливая работа. Если с первого раза не удастся получить нормального соединения, то нужно повторить работу. По нормативам серебряное напыление на проводнике должно выдерживать 3 цикла пайки при допустимых тепловых режимах, на практике сталкиваешься с тем, что напыление разрушается. Разрушение серебряного напыления происходит из-за использования паяльников с нерегулируемой мощностью (65Вт), этого нужно избегать, можно уменьшить мощность паяльника таким образом — для этого нужно последовательно с паяльником включить патрон с лампочкой в 100 Вт. Помните, что номинальная мощность паяльника нерегулируемого слишком большая для пайки кремниевых контактов.

Если вам продавцы проводников будут говорить, что припой на соединителе имеется, но вы его лучше нанесите дополнительно. Во время пайки будьте аккуратны, при минимальном усилии солнечные элементы лопаются, а так же не нужно складывать солнечные элементы пачкой, от массы нижние элементы могут треснуть.

Сборка и пайка солнечной батареи
При первой ручной сборке солнечной батареи лучше воспользоваться разметочной подложкой, которая поможет расположить элементы ровно на некотором расстоянии друг от друга (5 мм).

Разметочная подложка для элементов солнечной батареи

Основа выполняется из листа фанеры с маркированием уголков. После пайки на каждый элемент с обратной стороны крепится кусок монтажной ленты, достаточно прижать заднюю панель к скотчу, и все элементы переносятся.

Монтажная лента, использованная для крепления, с обратной стороны солнечного элемента

При данном типе крепления сами элементы дополнительно не герметизируют, они могут свободно расширяться под действием температуры и это не приведет к повреждению солнечной батареи и разрыву контактов и элементов. Герметизации поддаются только соединительные части конструкции. Такой вид крепления больше подходит для опытных образцов, но вряд ли может гарантировать долгосрочную эксплуатацию в полевых условиях.

Последовательный план сборки батареи выглядит так:

Выкладываем элементы на стеклянную поверхность. Между элементами должно быть расстояние, что предполагает свободное изменение размеров без ущерба конструкции. Элементы нужно прижать грузами.

Пайку производим по приведенной ниже электросхеме. «Плюсовые» токонесущие дорожки размещены на лицевой стороне элементов, «минусовые» — на обратной стороне.
Перед пайкой нужно нанести флюс и припой, после аккуратно припаять серебряные контакты.

По такому принципу соединяются все солнечные элементы.

Контакты крайних элементов выводятся на шину, соответственно, на «плюс» и «минус». Для шины используется более широкий серебряный проводник, который имеется в наборе Solar Cells.
Рекомендуем также вывести «среднюю» точку, с ее помощью ставятся два дополнительных шунтирующих диода.

Клемма устанавливается также с внешней стороны рамы.

Так выглядит схема подключения элементов без выведенной средней точки.

Так выглядит клеммная планка с выведенной «средней» точкой. «Средняя» точка позволяет на каждую половину батареи поставить шунтирующий диод, который не даст батарее разряжаться при снижении освещения или затемнении одной половины.

На фото показан шунтирующий диод на «плюсовом» выходе, он противостоит разрядке аккумуляторов через батарею в ночное время и разрядке других батарей во время частичного затемнения.
Чаще в качестве шунтирующих диодов используют диоды Шотке. Они дают меньшую потерю на общей мощности электрической цепи.
В качестве токовыводящих проводов может быть использован акустический кабель в силиконовой изоляции. Для изоляции можно применить трубки из-под капельницы.
Все провода должны быть прочно зафиксированы силиконом.

Элементы могут быть соединены последовательно (см. фото), а не посредством общей шины, тогда 2-й и 4-й ряд необходимо повернуть на 1800 относительно 1-го ряда.

Основные проблемы сборки солнечной панели связаны с качеством пайки контактов, поэтому специалисты предлагают перед герметизацией панели ее протестировать.

Тестирование панели перед герметизацией, напряжение сети 14 вольт, пиковая мощность 65 Вт

Тестирование можно делать после пайки каждой группы элементов. Если вы обратите внимание на фотографии в мастер-классе, то часть стола под солнечными элементами вырезана. Это сделано намеренно, чтобы определить работоспособность электрической сети после пайки контактов.

Герметизация солнечной панели

Герметизация солнечных панелей при самостоятельном изготовлении — это самый спорный вопрос среди специалистов. С одной стороны, герметизация панелей необходима для повышения долговечности, она всегда применяется при промышленном изготовлении. Для герметизации зарубежные специалисты рекомендуют использовать эпоксидный компаунд «Sylgard 184», который дает прозрачную полимеризованную высоко эластичную поверхность. Стоимость «Sylgard 184» составляет около 40 долларов.

Герметик с высокой степенью эластичности «Sylgard 184»

Но с другой стороны, если вы не хотите тратить дополнительные деньги, то вполне можно задействовать силиконовый герметик. Однако в этом случае не стоит полностью заливать элементы, чтобы избежать их возможного повреждения в процессе эксплуатации. В таком случае элементы к задней панели можно прикрепить при помощи силикона и герметизировать только края конструкции.

Перед началом герметизации необходимо подготовить смесь «Sylgard 184».

Сначала заливаются места стыков элементов. Смесь должна схватиться, чтобы закрепить элементы на стекле.

После фиксации элементов делается сплошной полимеризирующий слой эластичного герметика, распределить его можно с помощью кисточки.

Так выглядит поверхность после нанесения герметика. Герметизирующий слой должен просохнуть. После полного высыхания можно закрыть солнечную батарею задней панелью.

Так выглядит лицевая сторона самодельной солнечной панели после герметизации.

Схема электроснабжения дома

Систему электроснабжения дома с использованием солнечных батарей принято называть фотоэлектрическими системами, т.е. системами, генерирующими энергию с использованием фотоэлектрического эффекта. Для собственных жилых домов рассмотрены три фотоэлектрические системы: автономная система энергообеспечения, гибридная батарейно-сетевая фотоэлектрическая система, безаккумуляторная фотоэлектрическая система, подключенная к центральной системе энергоснабжения.

Каждая из вышеперечисленных систем имеет свое предназначение и преимущества, но наиболее часто в жилых домах применяют фотоэлектрические системы с резервными аккумуляторными батареями и подключением к централизованной энергосети. Питание электросети осуществляется при помощи солнечных батарей, в темное время суток от аккумуляторов, а при их разрядке — от центральной энергосети. В труднодоступных районах, где нет центральной сети, в качестве резервного источника энергоснабжения используются генераторы на жидком топливе.

Более экономной альтернативой гибридной батарейно-сетевой системе электроснабжения будет безаккумуляторная солнечная система, подсоединенная к центральной сети энергоснабжения. Электроснабжение осуществляется от солнечных батарей, а в темное время суток сеть питается от центральной сети. Такая сеть более применима для учреждений, потому что в жилых домах большая часть энергии потребляется в вечернее время.

Схемы трех типов фотоэлектрических систем

Рассмотрим типичную установку батарейно-сетевой фотоэлектрической системы. В качестве генератора электроэнергии выступают солнечные панели, которые подсоединены через соединительную коробку. Далее в сети устанавливается контроллер солнечного заряда, чтобы избежать короткого замыкания при пиковой нагрузке. Электроэнергия накапливается в резервных батареях-аккумуляторах, а также подается через инвертор на потребители: освещение, бытовую технику, электроплиту и, возможно, используется для нагревания воды. Для установки системы отопления эффективнее применять гелиоколлекторы, которые относятся к альтернативной гелиотехнологии.

Гибридная батарейно-сетевая фотоэлектрическая система с переменным током

Существует два типа электросетей, которые используются в фотоэлектрических системах: на базе постоянного и переменного тока. Использование сети переменного тока позволяет размещать электропотребители на расстоянии, превышающем 10–15 м, а также обеспечивать условно-неограниченную нагрузку сети.

Для частного жилого дома обычно используют следующие комплектующие фотоэлектрической системы:
-суммарная мощность солнечных панелей должна составлять 1000 Вт, они обеспечат выработку около 5 кВт ч;
-аккумуляторы с общей емкостью в 800 А/ч при напряжении 12 В;
-инвертор должен иметь номинальную мощность 3кВт с пиковой нагрузкой до 6 кВт, входное напряжение 24–48 В;
-контроллер солнечного разряда 40–50 А при напряжении в 24 В;
-источник бесперебойного питания для обеспечения кратковременного заряда с током до 150 А.

Из этого следует, что для фотоэлектрической системы электроснабжения понадобится 15 панелей на 36 элементов, пример сборки которых описан выше. Каждая солнечная панель дает суммарную мощность в 65 Вт. Более мощными будут солнечные батареи на монокристаллах. Например, солнечная панель из 40 монокристаллов имеет пиковую мощность 160 Вт, однако такие панели чувствительны к пасмурной погоде и облачности. В этом случае солнечные панели на базе поликристаллических модулей оптимальны для использования.

Информация с сайта:

Альтернативные источники электроэнергии набирают популярность с каждым годом. Постоянные повышения тарифов на электроэнергию способствуют этой тенденции. Одна из причин, заставляющая людей искать нетрадиционные источники питания - это полное отсутствие возможности подключения к сетям общего пользования.

Наиболее востребованными на рынке альтернативных источников питания являются . Эти источники используют эффект получения электрического тока при воздействии солнечной энергии на полупроводниковые структуры, изготовленные из чистого кремния.

Первые солнечные фотопластины были слишком дорогими, их использование для получения электроэнергии не было рентабельным. Технологии производства кремниевых солнечных батарей постоянно совершенствуются и сейчас можно приобрести по доступной цене.

Энергия света бесплатна, и если мини-электростанции на кремниевых элементах будут достаточно дешевы, то такие альтернативные источники питания станут рентабельными и получат очень широкое распространение.

Подходящие подручные материалы

Схема солнечной батареи на диодах Многие горячие головы задают себе вопрос: а можно ли из подручных материалов. Конечно же, можно! У многих со времен СССР сохранилось большое количество старых транзисторов. Это наиболее подходящий материал для создания мини-электростанции собственными руками.

Также можно изготовить солнечную батарею из кремниевых диодов. Еще одним материалом для изготовления солнечных батарей является медная фольга. При применении фольги для получения разницы потенциалов используется фотоэлектрохимическая реакция.

Этапы изготовления транзисторной модели

Подбор деталей

Наиболее подходящими, для изготовления солнечных батарей, являются мощные кремниевые транзисторы с буквенной маркировкой КТ или П. Внутри они имеют большую полупроводниковую пластину, способную генерировать электрический ток под воздействием солнечных лучей.

Совет специалистов: подбирайте транзисторы одного наименования, так как у них одинаковые технические характеристики и ваша солнечная батарея будет стабильнее в работе.

Транзисторы должны быть в рабочем состоянии, в противном случае толку от них не будет. На фото представлен образец такого полупроводникового прибора, но можно взять транзистор и другой формы, главное, он должен быть кремниевым.

Следующий этап – это механическая подготовка ваших транзисторов. Необходимо, механическим путем, удалить верхнюю часть корпуса. Проще всего произвести эту операцию с помощью небольшой ножовки по металлу.

Подготовка

Зажмите транзистор в тисках и аккуратно сделайте пропил по контуру корпуса. Вы видите кремниевую пластину, которая будет выполнять роль фотоэлемента. Транзисторы имеют три вывода – базу, коллектор и эмиттер.

В зависимости от структуры транзистора (p-n-p или n-p-n), будет определена полярность нашей батареи. Для транзистора КТ819 база будет плюсом, эмиттер и коллектор минусом.

Наибольшая разница потенциалов, при подаче света на пластину, создается между базой и коллектором. Поэтому в нашей солнечной батарее будем использовать коллекторный переход транзистора.

Проверка

После спиливания корпуса транзисторов их необходимо проверить на работоспособность. Для этого нам необходим цифровой мультиметр и источник света.

Базу транзистора подключаем к плюсовому проводу мультиметра, а коллектор к минусовому. Измерительный прибор включаем в режим контроля напряжения с диапазоном 1В.

Направляем источник света на кремниевую пластину и контролируем уровень напряжения. Оно должно быть в пределах от 0.3В до 0.7В. В большинстве случаев один транзистор создает разницу потенциалов 0.35В и силу тока 0.25 мкА.

Для подзарядки сотового телефона нам необходимо создать солнечную панель примерно из 1000-ти транзисторов, которая будет выдавать ток в 200-ти мА.

Сборка

Собирать солнечную батарею из транзисторов можно на любой плоской пластине из материала, не проводящего электричество. Все зависит от вашей фантазии.

При параллельном соединении транзисторов увеличивается сила тока, а при последовательном повышается напряжение источника.

Кроме транзисторов, диодов и медной фольги для изготовления солнечных батарей можно использовать алюминиевые банки, например, пивные, но это будут батареи нагревающие воду, а не вырабатывающие электроэнергию.

Смотрите видео, в котором специалист подробно объясняет, как сделать солнечную батарею из транзисторов своими руками:


У людей, которые увлекаются радиоделом со временем накапливается достаточно много различных электронных деталей, среди которых могут быть и старые советские транзисторы в металлическом корпусе. Как радиодетали они уже давно не актуальны из-за своих больших габаритов, однако их можно использовать совершено по другому назначению: в качестве солнечной батареи. Правда мощность такой батареи выходит достаточно мала по соотношению к ее размерам, и годится лишь для запитки маломощных устройств. Но все же можно собрать ее в качестве эксперимента и ради интереса.

Для переделки транзистора в солнечную батарею в начале необходимо спилить с него крышку. Для этого транзистор аккуратно зажимается в тисах за ободок на корпусе и ножовкой спиливаем крышку. Нужно делать это аккуратно,чтобы не вывести из строя кристалл и тонкие провода внутри транзистора.


После этого можно увидеть, что прячется внутри:


Как видно на фото кристалл достаточно не велик, по сравнению с корпусом транзистора, а ведь именно он и будет преобразовывать солнечную энергию в электрическую.


Вот таблица измерений, приведенная автором на примере транзистора КТ819ГМ:


После замеров можно приступить к сборке солнечной батареи для запитки калькулятора. Для получения 1,5 вольта необходимо последовательно собрать пять транзисторов, при этом коллектор будет минусом, а база – плюсом.


Для крепления транзисторов использовался кусок тонкого пластика, с предварительно просверленными под ножки отверстиями. После установки транзисторов на места, производится подключение из между собой, по указанной выше схеме:


Как показал эксперимент, на улице, при солнечном свете калькулятор работал неплохо, однако в помещении ему определенно не хватало энергии, и на расстоянии больше 30 сантиметров от лампы накаливания он работать отказывался.


Для увеличения мощности батареи имеет смысл подключить параллельно еще пять таких же транзисторов.

Многие бы хотели перейти на альтернативные источники энергии, ведь это гарантирует не только чистоту окружающей среды, но и экономию денежных средств, но не у каждого из нас есть возможности, чтобы следить и уж тем более использовать последние достижения человечества в этой сфере. Но как говорится, голь на выдумки хитра. Под этим девизом и появилась солнечная батарея из диодов, которую может собрать каждый, кто любит эксперименты и устройства, собранные своими руками.

Но у каждой вещи, изготовленной в домашних условиях из подручных материалов, есть две стороны. Первая – это явная экономия и чувство морального удовлетворения, которое получаешь, когда держишь в руках предмет, который своим появлением обязан только тебе, а вторая – это отсутствие гарантии работоспособности и практичности самодельного устройства. Не обошла стороной эта участь и диодную солнечную батарею. Ну а какая сторона окажется сильнее, Вы узнаете дальше.

В чем заключается принцип работы

В основе всего лежит тот факт, что под действием солнечных лучей диод вырабатывает напряжение. Именно это знание и послужило толчком к тому, что на свет родилась идея изготовления солнечных модулей из диодов. Но проблема в том, что величина вырабатываемого напряжение крайне мала, поэтому для получения более или менее мощной батареи понадобится неограниченное количество диодов.

Если вы хоть раз видели диод, то вы знаете, что он представляет собой, для других же поясним, что диод – это кристалл, заключенный в пластиковый корпус, который выступает в роли линзы, концентрирующей солнечный свет на небольшом проводнике. Исходя из этого, можно предложить, что в теории солнечная батарея может быть изготовлена из диодов. Но как дела обстоят на практике?

Собираем солнечный модуль. 1 часть:

Процесс сборки

Первый шаг – избавиться от корпуса. Для этой цели подойдут любые подручные средства, можно воспользоваться молотком, но очень аккуратно, удары должны быть несильными и осторожными, чтобы не повредить сам кристалл. Но этот шаг можно и пропустить, оставив диоды в их первоначальном состоянии. В таблице 1 приведены значения напряжения для светодиодов разных цветов.

Таблица 1

В качестве платы можно использовать обычную картонку, в которой делаются небольшие отверстия. При параллельном соединении диодов суммируется их сила тока, а при последовательном – напряжение. Наибольший эффект дает сочетание обоих этих видов. Как вы понимаете, сам процесс сборки достаточно простой, но времени на него уходит много. Тем более что, чем большее количество диодов Вы используете, тем большее напряжение будет выдавать Ваша солнечная батарея.

Опыт разрешит все споры

Солнечная батарея из светодиодов готова, теперь остается проверить ее показатели. 100 диодов выдали нам ток всего в 0,3 мА, и стоило ради этого столько возиться?! Если сравнить самодельную СБ с заводской, мы получим крайне неутешительные результаты. Площадь в 7 раз больше, стоимость в 3 раза, а мощность на выходе в 8 раз меньше. Вывод можно сделать не в нашу пользу.

В теории напряжение должно возрастать пропорционально количеству используемых светодиодов, но на практике все совсем не так. Тем более чем больше количество, тем большая площадь потребуется для их размещения, а значит, возрастут потери при их соединении. Еще одна проблема – самопроизвольное свечение. Некоторая часть светодиодов будет генерировать электроэнергию, а другая наглым образом ее потреблять. И устранить этот недостаток невозможно. Ну и 3-я проблема – выработка энергии диодами возможна лишь под прямыми солнечными лучами, небольшое облачко на небе – и напряжение на выходе равно нулю.

Вывод напрашивается сам собой: идея изготовления солнечной батареи из доступных диодов с самого начала обречена на провал. Выгоднее переплатить и приобрести заводской модуль, чем изготовить его своими руками. Есть, конечно, неплохие варианты, но о них мы уже рассказывали в одной из наших предыдущих статей.

Статью подготовила Абдуллина Регина

Собираем солнечный модуль. 2 часть:

Самостоятельное изготовление любого технического устройства из подручных средств всегда сопряжено с несколькими факторами. С одной стороны, ощутимая экономия финансов, с другой, солидные затраты времени и труда. Кроме того, вполне возможно, что собранное изделие будет работать несколько не так, как ожидалось, и выдавать совсем другие параметры. Солнечные батареи из диодов – не исключение.

Собрать такую батарею вполне возможно, но для этого потребуются, во-первых, диоды в достаточно большом количестве, во-вторых, плата для подложки, в-третьих, паяльное оборудование и навыки работы с ним. И, естественно, запас времени, поскольку размещение и пайка нужного количества диодов – процесс довольно долгий.

Как получается фототок

Внутри диода содержится полупроводниковый кристалл. Соответственно, под действием солнечных лучей в области p-n-зоны электроны приходят в движение и формируют направленный поток. Он же – фототок. Поэтому обычный диод вполне можно использовать в качестве элемента солнечной батареи.

Другое дело, что напряжение, вырабатываемое таким диодом, очень мало (для диодов типа КД оно составляет около 0,5 В), сила тока при этом – не более 7 мА. Для сравнения, ток потребления белого светодиода достигает 20 мА.

Из старых диодов

Первый этап изготовления диодной батареи своими руками – открытие внутреннего кристалла, чтобы на него попадали лучи солнца. Для этого верхняя часть диода аккуратно срезается и снимается, а нижняя, с кристаллом, подогревается над включенной газовой плитой примерно 20 сек.

Это нужно для того, чтобы расплавился припой, удерживающий кристалл, и кристалл легко извлекся при помощи пинцета. Полученные кристаллы припаиваются к монтажной плате (можно использовать любую подходящую подложку).

Количество кристаллов и схема их расположения зависят от требуемых в итоге параметров. К примеру, для получения на выходе 2-4 В можно собрать 5 блоков из 4-5 последовательно спаянных кристаллов. Между собой блоки коммутируются параллельно. Такой способ позволяет получить нужное напряжение при силе тока, достаточной для питания небольшого светодиодного устройства. Если же использовать только параллельное соединение, то при возросшем напряжении итоговая сила тока будет слишком маленькой.

Из светодиодов

Современные светодиоды тоже подойдут для изготовления мини-солнечной батареи. Принцип работы их фактически аналогичен обычным диодам, отличие только в наличии особого пластикового корпуса. Этот корпус выступает в роли своеобразной линзы и фокусирует лучи солнца на проводящем кристалле.

Вырабатываемое напряжение за счет этого будет выше, чем у обычных диодов. Так, для красно-прозрачного светодиода оно составляет примерно 1,3 В, для инфракрасного – 0,9 В, для зеленого – 1,5 В. Что же касается вырабатываемого батареей тока, то его величина будет незначительной. Как правило, из батареи на 100 диодов удается получить порядка 0,5 мА.

Размещать светодиоды можно как и на текстолитовой (или схожей) подложке, так и на простом плотном картоне. Принципы построения схемы и расчета требуемых параметров такие же, как и при работе с обычными диодами.

Есть ли польза?

Когда речь идет о светодиодах, не стоит забывать о таком явлении, как потребление тока самими диодами и их самопроизвольное свечение. Иными словами, в то время, когда часть светодиодов генерирует электричество, остальные будут его потреблять. В итоге, напряжение схемы увеличивается далеко не пропорционально числу задействованных элементов, и в определенный момент «обратные потери» становятся слишком значительными.

Кроме того, нормально работать самодельная батарея из диодов может только в ясную солнечную погоду. В условиях облачности ее выработка стремится к нулю.